Time perception and contextual drift with a naturalistic stimulus
Olga Lositsky, Daniel Toker, Janice Chen, Christopher J. Honey, Jordan L. Poppenk, Uri Hasson, Kenneth A. Norman
Princeton Neuroscience Institute and Department of Psychology at Princeton University

Abstract

Question: How do we retrospectively estimate durations on the order of minutes? Sahakyan and Smith (2013) found that mental context change during
Hypothesis: To estimate elapsed time, people compare their mental context at the start of the interval to their mental context at the end of the interval. Time estimates are proportional to the distance between these mental contexts.
Approach: We used neural activity patterns as a proxy for mental context (Manns, Howard, Eichenbaum, 2007; Jenkins \& Ranganath, 2010), and used the distance between these patterns to predict time judgments.
Experiment: 18 subjects listened to a 25 -minute story in the fMRI scanner. After the scan subjects estimated the duration of 43 intervals from the story. Is there a correlation between the amount of neural pattern change during an interval and time estimates?
Prior work has identified some brain areas (e.g. rostrolateral PFC; Jenkins \& Ranganath, 2010) involved in encoding temporal context. To see if other regions might also be involved, we first adopt an exploratory approach. Future work will test specific hypotheses about networks that
encode long time scale information. encode long time scale information.

Experimental Design	
fMRI session Subjects listen to 25-minute science fiction story	
Surprise Time Perception Test	
© $^{\text {Listen to Clip } 1} \downarrow^{\text {Listen to Clip } 2}$ (O)	
How much time passed between Clip 1 and Clip 2? Subjects enter time estimates in minutes and seconds \downarrow How confident are you about each clip's place in the story? Subjects rate confidence on a scale of 1 to 5	We controlled for objective duration: Half of the clip pairs were 2 minutes apart Half of the clip pairs were 6 minutes apart

Behavioral Results

fMRI Data Preprocessing

Challenge in tracking mental context with fMRI: How to remove low-frequency physiological and
scanner noise, while preserving components of neural activity that vary gradually over time scanner noise, while preserving components of neural activity that vary gradually over time Solutions:

1) Used gentlest high-pass filter (cut-off: scanner drift
2) Regressed out physiological noise (breathing) using method develop

7800
7600
7400
72000
7200 Simony et al. (in press) in our lab

Note: we were not able to develop a preprocessing pipeline that preserved signal on timescale of
six minutes (360 s) while removing most of the variance due to scanner noise six minutes (360s) while removing most of the variance due to scanner noise \Rightarrow Results presented here are solely from the 2 -minute durations

2. Multivariate Results by ROI

Left Anterior Cingulate Cortex (ACC), Right Pars Orbitalis, Right Temporal Pole and Right Parahippocampal Gyrus (PHG) passed multiple
comparisons correction (FDR q < 0.05).
3. Multivariate Results by Searchlight ($3 \times 3 \times 3$ voxels)

Right Middle Temporal Gyrus (MTG) PHG, Perirhinal and Temporal Pole
$\mathrm{p}<0.05 \mathrm{FWE}$-corrected

2 minutes confident questions

Right Pars Orbitalis and rostral Middle Frontal Right Pars Orbitalis and rostral Middle
Gyrus (BA 10) $p=0.05$ FWE-corrected

Discussion

Pattern change predicted time estimates in several regions that have been previously shown to encode temporal context:

- Parahippocampal gyrus is hypothesized to belong to a posterior-medial network involved in epresenting situational models (Ritchey \& Ranganath, 2012)
- Our clusters in the right perirhinal and right middle temporal gyrus (MTG) overlap with regions found by Ezzyat and Davachi (2011) to predict segmentation of mem ories into events. More
segmented memories have been linked with longer time estimates (Block and Zakay, 2008).
We also identified additional regions: bilateral insula, dorsal ACC, right putamen and pars orbitalis Activity in anterior insula, dorsal putamen and inferior frontal gyrus has been found to correlate With subjective time dilation (Craig 2009) - Caudal ACC activity has been found to increase for
(Alexander and Brown, 2011; Behrens et al., 2007).
Orbitofrontal cortex has been hypothesized to encode the current state of a task, analogous to a situation model (Wilson et al. 2013).

Ongoing Work

1. Long Temporal Receptive Window Regions

Hasson et al. 2008 developed techniques to isolate regions that integrate information over long time Hasson et al. 2008 developed teccniques to isolate regions that integrate information over loo
scales and are important for narrative comprehension. Does pattern change in these regions scales and are important for na
correlate with time estimates?
2. Relating Time Estimates to Event Boundaries

